Received: June 27, 1983; accepted: July 26, 1983

COORDINATION CHEMISTRY OF HIGHER OXIDATION STATES. 10 [1]. OXOFLUORO ANIONS OF OSMIUM(VIII) $[OsO_4F_2]^{2-}$ and $[OsO_3F_3]^{-}$

PETER J. JONES, WILLIAM LEVASON* and MAHMOUD TAJIK

Department of Chemistry, The University, Southampton SO9 5NH (U.K.)

SUMMARY

Trioxotrifluoroosmates(VIII) $M[OsO_3F_3]$ (M = Cs, Rb, K) have been prepared by direct combination of OsO_3F_2 and the appropriate alkali fluoride MF. The reaction of OsO_4 with M'F (M' = Cs, Rb) in aqueous solution produces the tetraoxodifluoroosmates(VIII) M'_2[OsO_4F_2]. On the basis of their vibrational spectra the assignment of a fac (C_{3v}) structure to $[OsO_3F_3]^-$ and a cis (C_{2v}) to $[OsO_4F_2]^{2-}$ is proposed. The electronic spectra of the anions have been recorded and are interpreted using the optical electronegativity concept.

INTRODUCTION

Few examples of $\operatorname{osmium}(\operatorname{VIII})$ compounds have been reported [2], simple compounds being limited to OsO_4 , OsO_3F_2 and imido-oxo compounds $\operatorname{Os}(\operatorname{NR})_n \operatorname{O}_{4-n}$ (n = 1-3). Complexes include $[\operatorname{OsO}_4(\operatorname{OH})_2]^{2-}$, $[\operatorname{OsO}_3\operatorname{N}]^-$, $[\operatorname{OsO}_4\operatorname{L}]$ (L = pyridine, quinuclidine, etc) and OsO_4 .2SbCl₅. Two types of oxofluoro anion $[\operatorname{OsO}_4F_2]^{2-}$ and $[\operatorname{OsO}_3F_3]^-$ have been briefly reported. Krauss and Wilken [3] prepared $\operatorname{M}^I_2[\operatorname{OsO}_4F_2]$ (M = Cs, Rb) from OsO_4 and aqueous MF, and $\operatorname{M}^I[\operatorname{OsO}_3F_3]$ (M = Cs, K, Ag) were obtained by Hepworth and Robinson [4] from OsO_4 , MBr and BrF₃, although only the silver salt was obtained in the pure state. Although both ions have been included in larger studies of the vibrational spectra of compounds with M=O multiple bonds [5,6], neither has been examined in detail. Here we report new preparations of $\operatorname{M}[\operatorname{OsO}_3F_3]$, and spectroscopic data on both series of complexes.

0022-1139/84/\$3.00

© Elsevier Sequoia/Printed in The Netherlands

EXPERIMENTAL

Infrared spectra were recorded on a Perkin Elmer 580B spectrometer in sodium-dried Nujol mulls. Raman spectra were obtained from the solid samples using a Cary 82 with a Spectrophysics He-Ne laser. Electronic spectra were recorded on a Perkin Elmer 554. Fluorine was determined by the lanthanum alizarin complexone method [7] and osmium spectrophotometrically as the thiourea complex [8].

Alkali-metal fluorides were obtained from Alfa Inorganics, and dried by prolonged heating in vacuo. Trioxodifluoroosmium(VIII) OsO_3F_2 was made from OsO_4 and fluorine in a Monel autoclave [9].

$Cs_2[OsO_4F_2]$

A warm (<u>ca</u> 50°C) concentrated solution of CsF (0.6 g, ~ 4 mmol) in water was stirred with OsO₄ (0.25 g, 1 mmol), and the solution allowed to cool to room temperature. The yellow solid was filtered off, and dried briefly <u>in vacuo</u> over P₄O₁₀. Found Os = 34.25, F = 6.7. Calc Os = 34.1, F = 6.8%.

 $\frac{Rb_2[OsO_4F_2]}{Rb_2[OsO_4F_2]}$

 $Rb_2[OsO_4F_2]$ was obtained similarly using cold aqueous RbF. The yellow solid separated overnight. Found Os = 41.0, F = 8.3. Calc Os = 41.1, F = 8.2%

The reaction of CsF with OsO_4 in cold water gave a pale yellow solid. Typical analyses. Os = 47.8, F = 6.0. Calc for CsF.OsO_4 Os = 46.8% 50.0 5.9 F = 4.8%

 $\frac{M[OsO_3F_3]}{M} (M = Cs, Rb, K)$

A silica ampoule fitted with a graded seal and connected to a vacuum line via a side arm closed with a Teflon tap (J T Young Ltd) was thoroughly flammed in vacuo (<10⁻³ torr). It was then loaded in a dry box (\leq 10 ppm H₂0) with finely powdered alkali fluoride and $0s0_3F_2$ in a 1:~1.2 mol ratio. The ampoule was evacuated, the tap closed and the mixture heated in an oil bath at <u>ca</u> 120-150°C for 2-3 hours. The product was an orange-yellow

196

powder. The excess $0s0_3F_2$ was then sublimed away by warming under a dynamic vacuum. The free flowing powder was transferred to sealed containers in a dry box.

RESULTS AND DISCUSSION

 $M_{2}[0s0_{4}F_{2}]$ (M = Cs, Rb)

The reaction of OsO_4 with a concentrated aqueous solution of RbF produced a deep yellow solution, which on standing at room temperature slowly deposited yellow crystals of $Rb_2[OsO_4F_2]$. The corresponding reaction between OsO_4 and CsF at ambient temperature produced a pale yellow solid of rather variable composition approximating to "CsF.OsO₄", but when a warm (<u>ca</u> 50°C) concentrated CsF solution was used, yellow $Cs_2[OsO_4F_2]$ crystallised on cooling. Attempts to isolate potassium or tetramethylammonium salts were unsuccessful, although reaction occurred in solution.

Ruthenium tetroxide dissolves in aqueous CsF solution to give a deep yellow solution (cf Ref 10) but on standing brown-black $\text{RuO}_2.\text{nH}_2\text{O}$ deposits, and evaporation of the solution resulted in loss of the RuO_4 . Thus there is no evidence that $[\text{RuO}_4\text{F}_2]^{2-}$ ions can be isolated. The result reflects both the greater instability of Ru(VIII) and the reluctance of the 4d element to increase its coordination number [11].

The $M_2[0s0_4F_2]$ slowly lose $0s0_4$ on standing, and the $0s0_4$ is completely lost on heating in vacuo. The two possible structures for the anion are <u>cis</u> (C_{2v}) or <u>trans</u> (D_{4h}) , which can be distinguished by their vibrational spectra. For the stretching vibrations we have:

 $\frac{\text{cis}}{\text{active}} (C_{2\nu}) v(0sO_4) = 2a_1 + b_1 + b_2, v(0sF_2) = a_1 + b_1 (all IR + Raman active)$ $\frac{\text{trans}}{a_{2\nu}} (D_{4h}) v(0sO_4) = a_{1g}(R) + b_{1g}(R) + b_{1u}(IR), v(0sF_2) = a_{1g}(R) + a_{2\nu}(IR).$

From the coincidences between the IR and Raman spectra (Table), it is clear that the anion has a cis structure. TABLE

Vibrational spectra of $[{\rm OsO_4F_2}]^{2-}$ and $[{\rm OsO_3F_3}]^-$

	v(0s0 ₄)	$v(OsF_2)$	δ(0s0 ₄)	
$\overline{\text{Cs}_2[\text{OsO}_4\text{F}_2]}$	948m,932s,916s,892s	478m,422m	325s,308s	IR
2 1 2	946s,927s,919s,900m ^a			R
$Rb_{2}[OsO_{4}F_{2}]$	940sh,930s,916s,898s	480s,420s	322s,305s	IR
"CsF.0s0 ₄ "	(953w ^b),935s,912s,895s	420w(?)	322s,308s	IR
	926s,917w,900m			R
	v(0s0 ₃)	v(0sF ₃)	δ(0s0 ₃)	
$Cs[0s0_{z}F_{z}]$	932sh,915s	565s,482s	330sh,310s	IR
Rb[OsO _z F _z]	928s,918s	568s,490s	340sh,310s	IR
K[0503F3]	932s,918s	570s,490s,478sh	340m,305s	IR
	952s,916s			R
"Na[0s0 ₃ F ₃]" ^C	9355,9205	580s,490s,460s	330m,303s	IR

a Compound decomposes slowly in laser beam.

^b OsO₄ impurity. ^c Also bands at 668m, 630s, 390s.

Fig. Diffuse reflectance spectra of the anions $[0s0_4F_2]^{2-}$ and $[0s0_3F_3]^{-}$.

The diffuse reflectance spectrum of $Cs_2[0s0_4F_2]$ is shown in the Figure. For a d⁰ system the absorptions must arise from L \rightarrow M charge transfer, and the energies of the lowest F \rightarrow Os and O \rightarrow Os transitions can be predicted approximately using the optical electronegativity formula [12].

$$E_{max} = 30[\chi_{opt}(L) - \chi_{opt}(M)] \times 10^3 \text{ cm}^{-1}$$

From the spectrum of OsO_4 , χ_{opt} (Os^{VIII}) has been estimated [12] as <u>ca</u> 2.1, which allowing for the differences of 0.4-0.5 units observed between tetrahedral and octahedral environments of the same ion, would place χ_{opt} (Os^{VIII}) for a six-coordinate complex at <u>ca</u> 2.5-2.6. On this basis using χ_{opt} (F) = 3.9 and χ_{opt} (O) = 3.2, the formula predicts (±2000 cm⁻¹) the lowest energy F \rightarrow Os transition at <u>ca</u> 39000 cm⁻¹ and O \rightarrow Os at <u>ca</u> 19000 cm⁻¹, in good agreement with the observed spectrum.

The $M_2[0s0_4F_2]$ salts are extensively hydrolysed in water, and in a saturated solution the ¹⁹F NMR spectra consist of a single line at <u>ca</u> -118 ppm (relative external CFCI₃) which is not significantly different from the spectrum of the alkali-fluorides. Griffith [5] has reported the Raman spectrum of $Cs_2[0s0_4F_2]$ in solution in the presence of excess CsF, which is in good agreement with our data on the solid, showing that the dissociation is suppressed by excess F^- .

The nature of the product obtained from CsF and $0s0_4$ in cold water, approximating to "CsF.0s0₄" is less clear, and it has not been obtained with an accurately reproducible composition. It is not a mixture of $0s0_4$ and $Cs_2[0s0_4F_2]$ since its IR spectrum contains only a weak band at 953 cm⁻¹ due to $0s0_4$ (a minor impurity) and it lacks the two 0sF stretches of the $[0s0_4F_2]^{2^-}$ anion. The presence of at least three v(0s0) stretches in the IR and Raman spectra suggests relatively low symmetry, and it may contain five-coordinate $[0s0_4F]^-$ similar to the $[0s0_4L]$ (L = pyridine or quinuclidine) [13].

$M[OsO_{z}F_{z}] \quad (M = Cs, Rb, K)$

The literature preparation [4] of this anion using BrF_3 produces a material which cannot be freed completely from bromine. Pure samples of all these salts were easily obtained by heating the powdered alkali fluoride with a slight excess of OsO_3F_2 in an evacuated ampoule, and subsequently subliming away the excess OsO_3F_2 , leaving the pure M[OsO_3F_3]

as deep orange-yellow powders. A similar reaction with NaF produced a material which from its analysis and IR spectrum was a mixture of Na $[0s0_3F_3]$ and another (uncharacterised) fluoroanion. Lithium fluoride failed to form an $[0s0_3F_3]^-$ salt, reflecting the usual decreasing stability of fluoro anions with decreasing cation size. Barium fluoride reacted only superficially with $0s0_3F_2$ under similar conditions. Yagodin et al. [14] have recently prepared M₂[Re0₃F₃] (M = Cs, Rb, K) from Re0₃F with 2MF, but found NaF gave a mixture of NaRe0₄ and Na₂[Re0₃F₃].

For the $[0s0_3F_3]$ ion either a <u>fac</u> (C_{3v}) or <u>mer</u> (C_{2v}) geometry is possible. The predicted vibrations are:

 $\frac{fac}{mer} (C_{3v}) v(0s0_3) = a_1 + e, v(0sF_3) = a_1 + e, all IR + Raman active$ $\frac{mer}{c} (C_{2v}) v(0s0_3) = 2a_1 + b_1, v(0sF_3) = 2a_1 + b_1, all IR + Raman$ active.

Previous studies by Griffith [5] and Jezowska-Trzebiatowska [6] have favoured a <u>fac</u> isomer, although a recent study [15] of the isoelectronic $[\text{ReO}_3\text{F}_3]^{2-}$ assigned a <u>mer</u> geometry to the latter. Our data (Table) is in reasonable agreement with the published data [5,6] and supports a C_{3v} structure, although we suspect the reported OsO₃ stretch at 952 cm⁻¹ is due to OsO₄ produced by hydrolysis.

The electronic spectrum of the $[0s0_3F_3]^-$ ion (Figure) is generally similar to that of $[0s0_4F_2]^{2-}$ as expected, although the relative intensities of the bands differ.

The $M[0s0_3F_3]$ are much more stable thermally than the $M_2[0s0_4F_2]$, and are only partially decomposed on heating at <u>ca</u> 250°C <u>in vacuo</u> for several hours. On exposure to moist air hydrolysis occurs quite rapidly, the IR spectra of partially hydrolysed materials showing bands characteristic of $0s0_4$ and MHF_2 , and new bands at 850 and 810 cm⁻¹ suggesting formation of a new oxo-osmium species. The complexes dissolve in cold water to form a yellow solution which decomposes on standing.

ACKNOW LEDGEMENT

We thank SERC for support and for a postdoctoral fellowship (MT), and Dr T R Gilson for obtaining the Raman spectra.

REFERENCES

1	Part 9. S J Higgins, W Levason and D J Wilkes, submitted for
	publication.
2	For a review see, D J Gulliver and W Levason, Coord Chem Rev, <u>46</u> ,
	(1982), 1.
3	F Krauss and D Wilken, Z Anorg Allgem Chem, 145, (1925), 151.
4	M A Hepworth and P L Robinson, J Inorg Nucl Chem, 4, (1957), 24.
5	W P Griffith, J Chem Soc (A), (1969), 211.
6	B Jezowska-Trzebiatowska, J Hanuza and M Baluka, Acta Phys Pol (A),
	<u>38</u> , (1970), 563.
7	R Greenhalgh and J R Riley, Anal Chim Acta, <u>25</u> , (1961), 179.
8	G H Ayres and W N Wells, Anal Chem, 22, (1950), 317.
9	W A Sunder and F A Stevie, J Fluor Chem, <u>6</u> , (1975), 449.
10	O Ruff and E Vidik, Z Anorg Allgem Chem, <u>136</u> , (1924), 49.
11	W P Griffith, 'The Chemistry of the Rarer Platinum Metals', Wiley,
	New York, 1967, p16.
12	C K Jorgensen, Progr Inorg Chem, <u>12</u> , (1970), 101.
13	M J Cleare, P C Hydes, W P Griffith and M J Wright, J Chem Soc
	Dalton Trans, (1977), 941.
14	G A Yagodin, A A Opalovskii, E G Rakov and A S Dudin, Dokl Akad Nauk
	SSSR, <u>252</u> , (1980), 1400.
15	W Kuhlmann and W Sawodny, J Fluor Chem, 9, (1977), 341.

20